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EFFECT OF PARTICLE COLLISIONS ON THE MOTION AND INTERPHASE HEAT

TRANSFER IN A VERTICAL TWO-PHASE FLOW

G. L. Babukha and A. A. Shraiber
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The mechanism of motion of a polydisperse material in a two-
phase flow is largely determined by the collisions between particles
of different sizes. This is of particular impoitance in calculating the
heat and mass transfer between the solid phase and the transporting
gas flow,
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However, the collision process has not been thoroughly investigated.

The present authors are familiar with two studies devoted to a theo-
retical investigation of the motion of a multi-fraction material in a
stabilized flow with absolutely elastic collisions between particles

[1, 2]. Correctly assuming that in the presence of collisions the veloc-
ities of particles of any size assume values in a certain range, the au-
thors cited postulate that only particles with minimum (if collision
leads to an increase in particle velocity) or maximum (otherwise) ve-
locity in the corresponding range can participate in the collisions.
This is a highly idealized model.

The method of solving the equation of motion of the solid phase
proposed in [1] is based on replacement of the actual polydisperse
material by a certain conventional single-fraction material consisting
of so-called equivalent particles, whose velocity (and diameter) is
determined from the conditions of equality of the true and flow con-
centrations of the actual and conventional dispersed materials, It is
assumed that the equivalent particles represent the center of gravity
of the disperse material in the flow, so that for these particles the
interactions with smaller and larger particles are in balance. On this
basis the author proposes to replace the action of the entire system of
particles of polydisperse material on a particular particle by the action
of equivalent particles of corresponding concentration. The proposed
model and its mathematical description are debatable, In the section
that follows another method of solving the problem is proposed.

§1. Laws of particle collision in a two-phase flow,
We shall consider the simple case when the dispersed
material consists of spherical particles of two differ-
ent sizes. We assume that particles with any veloci-
ties in the ranges of possible velocity may participate
in a collision and that collisions take place only be-
tween particles of different sizes, Moreover, we shall
not consider turbulent fluctuations of the gas flow. We
assign the subscript 1 to the larger particles, and the
subscript 2 to the smaller ones.

We shall consider a section dL of the flow large
enough to accommodate a considerable number of par-
ticles of both fractions, but small enough compared

with the scale of variation of the velocities and con-
centrations of the disperse material. In the time in-
terval dr a certain large particle collides with those
small particles whose centers lie at the beginning of
the interval d7 within a cylinder whose base is a circle
of diameter 6, + §, and whose height is equal to (u, —
— uy)dr (here & is the particle diameter, and u is the
vertical component of its velocity). Let the true vol-
ume concentration of small particles on the section

dL be equal to 8, = wBy/u, [3], where w is the gas flow
velocity, and 8" is the flow volume concentration. Since
under actual conditions the volume concentration of
solids in the flow is low, it may be assumed that col-
lisions in which more than two particles participate
are improbable [4], and only pair collisions need be
considered. Accordingly, the mean free time for a
large particle
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A similar expression can be obtained for the small
particles.

Calculations show that the particles in the flow ex-
perience very frequent collisions. Thus, at 6, =1 mm,
8, =0.1mm, By =4-10"3 m¥%/m?3, g; =2:107% m¥/m?,
uy — u; = 5 m/sec, a large particle experiences more
than 35 thousand collisions per second, and a small
particle about 20 thousand. Accordingly, in the first
approximation we can replace the discrete interaction
of the fractions by a certain continuously acting force

F‘l = miAui/ ATQ . (1.2)
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Here, Au is the change in particle velocity due to
a single collision, and m is the particle mass, In this
case, it is possible to consider not ranges of values
of the velocity of the particles of each fraction, but
certain mean values,

For an absolutely elastic glancing collision between
particles with absolutely smooth surfaces the average
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change in the vertical component of the velocity of a
large particle [1}

Auy = (uy — wy) my/ (my -+ my), (1.3)

In this case the horizontal components of the par-
ticle velocities may be disregarded [1]. It is easy to
see that if the collisions are not completely elastic,
Eq. (1.3) must be replaced with the following equation:
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Auy = (1.4)

where k is the coefficient of restitution, which depends
on the elastic properties of the colliding bodies and
their relative velocity. A similar expression can be
written for the small particles.

Keeping in mind (1. 1), (1.2), and (1.4), we write
the equations of motion of the particles in a two-phase
flow [3]:
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Here, v is the critical particle velocity, n is an ex—
ponent taking values from 1 to 2 depending on the value
of the Reynolds number [3]. Equations (1.5) and (1. 6)
have been reduced to a single independent variable,

the time scale associated with the motion of the large
particles,
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In the case of an isothermal flow system (1.5), (1.6)
is closed. In the presence of interphase heat transfer
system (1.5), (1.6) must be supplemented with the heat
transfer equations for both fractions and the heat bal-
ance equation [5]. The system of equations thus ob-
tained can easily be solved by the method of finite dif-
ferences,

As an example we have calculated the heating of a material com-
posed of two fractions in a flow with &, = 5 mm, & = 0.5 mm, wg=
=40 m/sec, U=y = 0, 5= 800°C, 1;,=tq= 0°C, k=1 (heret
is the temperature of the material, t* the temperature of the gas, and
the subscript O indicates that the quantity relates to the initial section
of the flow). Figure 1 shows the variation of the velocities u and w
(m/sec), and Fig. 2 the variation of the gas temperature t* (*C) and
particie temperature t (°C) along the length of the flow (continuous
lines). For comparison, the broken lines represent the results of a cal-
culation made without allowance for collisions [5]. Curves 1 in Figs,
1 and 2 relate to the large particles, 2 to the smaller particles, and 3
to the gas,
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It is clear from Fig. 1 that the presence in the two-phase flow of
a fine fraction considerably increases the velacity of the large parti-
cles at all sections of the flow, particularly at a considerable distance
from the initial section, For example, collisions lead to an increase
in the velocity of the large particles on the stabilized section of the
flow from 5.7 to 13 m/sec. At the same time, the reduction in the
velocity of the fine particles due to collisions is inconsiderable.

Particle collisions cause the relative velocity (and hence the rate
of heat transfer) to increase for small particles and decrease for large
ones, Moreover, under the influence of collisions the dwell time of
the particles in a certain section of the heater tube decreases markedly
for large particles and increases somewhat for fine ones, These factors
considerably increase the degree of nonuniformity of heating of a poly-
disperse material and lead to an increase in the maximum temperature
to which the fine particles are heated in the flow, which is often in-
admissible for technical reasons, In the presence of collisions a heater
tube of considerably greater length is required to heat the coarse frac-
tion to a given temperature, since the heating rate for coarse parti-
cles is reduced.

We shall extend the results obtained to the case of
a dispersed material with a continuous particle size
distribution. Let the fractional composition of the solid
phase be characterized by a distribution function x(4),
while d8' = x(6)d6. The problem reduces to finding the
functions u = u(6) on the stabilized and u = u(d, L) and
t = t{d, L) on the acceleration section of the flow.

We shall consider two fractions whose particle sizes
lie on the interval (6;, &; + dé;) and (6,, 6, + d6y). The
action of the second fraction on the first is given by
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Integrating (1.7) over the interval of variation of
the particle size and keeping in mind the gravity force
and aerodynamic drag, after transformations we ob-
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tain the equation of motion of the dispersed material
on the stabilized section of the flow:
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Equation (1. 8) can be solved quite easily on a com-~
puter by the cut-and-try method. In this case the pro-
posed method of calculating the particle velocities
does not involve a greater volume of computation than
the method proposed in [1].

On the acceleration section the sum of the forces
acting on a particle is obviously equal to its accelera-
tion

du (81, 11)/07y = @ (u). (1.9)
In the given case the equations of interphase heat
transfer [5] can also be written without modification.
The change of gas temperature on the section dL
due to heat exchange with particles of the fraction (4§,
o, + déy) is {5] -

a2 — — P
c'p

(1.10)

-z (8y) ddy dty .

where ¢, p, c*, p* are the specific heat and density
of the solid and gas phases, respectively. Integrating
(1.10) with the initial conditions [t* = ty*, t(6;, 1)) =
= (6, 0)], after transformations we obtain the heat
balance equation

SI‘I.laX
t*‘—‘to'—;% 5 [t B1, T1) — £ (81, 0)] 2 (&) ddy. (1.11)
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The system of equations obtained for the accelera-
tion section [(1.9), (1.11), heat transfer equations]
can be solved by the method of nets. In this case the
required functions must be known in the initial section
of the flow.

Using the above tmethod, we calculated the motion of a dispersed
material in a two-phase flow (for simplicity, isothermal conditions
were considered) at 8p:n = 50 microns, 8y, = & mm, X(6) = const =
=0.4m™, k=1, in the initial section u(é) = 0, Certain results of
the calculation are presented in Fig. 3. Curves 1-6 relate to the ac-
celeration section, curve 7 to the stabilized section. For comparison,
we have presented the particle uniform velocity distribution without

allowance for collisions (curve 8). As can be seen from Fig. 3, the
small particles very quickly artain velocities close to their uniform
velocities, Therefore, close to the initial section (curves 5,6) the
range of velocities of particles of the dispersed material is very broad.
Subsequently, the velocity of the fine fractions varies slowly, while
the velocity of the large particles continues to increase owing to col-
lisfons with fine particles and the action of the aerodynamic drag, as
a result of which the range of particle velocities contracts,

We shall now exaniine the basic properties of the method of allow -
ing for particle collisions described by S. 1. Shabanov in [1].

The true volume concentration of the dispersed material in the
flow is [3]

Bmax ®
. x
B=w S () ds.

Smin

(1.12)

With account for (1,12) the velocity of the equivalent particles
considered in [1] is equal to :

dmax

v} o]

8min

(1.13)

and their diameter ée can be determined from curve 7 in Fig, 3.

The size §, of the particles of the fraction for which the interac-
tions with smaller and larger particles are in balance is determined
from the condition that the integral on the left side of (1.8) is equal
to zero, Obviously, the diameter of these particles is equal to the
abscissa of the point of inteisection of curves 7 and 8 in Fig. 3.

As follows from (1.12), the size & of the particles representing
the center of gravity of the dispersed material in the flow can be de-
termined from the equation

8 o
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Thus, the three quantities &g, 8, & are determined from three
different conditions, and in the general case the assumption made in
[1} that they are equal is only a very rough approximation, For ex-
ample, in the calculation mentioned above, these quantities take the
following values on the stabilized section of the flow: de = 2.22 mm;
§,= 1.58 mm; & = 2.73 mm.

The method of solving the equations of motion of a dispersed ma-
terial proposed in {1} is to apply the mean value theorem to the in-
tegral depending on the parameter:
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In this case it is assumed that the mean value {8 = const = de,
However, as it is easy to see from (1.18), in the general case (8) =
= (8> (81), and the values of this function may vary within quite wide
limits. Thus, in the above-mentioned example the quantity (8> takes
the following values:

&,mm 005 02 05 1 2 5
@y, mm 225 4 125 154 1.3%8 1.75.

§2. Motion and heat transfer of particles of vari-
able mass in a two~phase flow. Under certain tem-
perature and hydrodynamie conditions collisions be-
tween the particles of a multifraction material may
lead to agglomeration (thermal granulation) of the
dispersed material, In order to calculate this process,
it is first necessary to solve two associated problems:
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to establish the law of particle collision (see §1), and

the laws of motion and heat transfer of particles whose

mass varies along the length of the flow owing to the
continual adhesion of other individual particles or ag-
gregations.

In order to solve the second problem, we shall con-
sider the simple case of a two-fraction material, when

under given temperature and hydrodynamic conditions
a certain fraction of the particle collisions leads to
agglomeration,

We shall assume that the conditions adopted in §1
are satisfied. Moreover, in the first approximation
we shall consider that in the process of thermal gran-
ulation the growing particles preserve their spherical
shape.

We write the equation of motion of a particle of
variable mass:

dLn(mlul)—“-‘*Pl‘i'Fm—I*Frf—u?dml (2.1)

Here P is the weight of the particles, F, is the
aerodynamic drag, F is a continuously acting force
equivalent to the action of the small particles in col~
lisions that do not lead to agglomeration (§1). The
subscripts 1 and 2 relate to the large and small par~
ticles, respectively.

In a time AT (1.1) the mass of a large particle in-
creases on the average by ¢m, (¢ is the fraction of
collisions leading to agglomeration of the colliding
particles). Since, in practice, a large particle ex-
periences very frequent collisions (§1), we substitute
for the discrete change in its mass the continuous
variation

dm, / dty = gm,/ At

and after transformation we obtain

im sty —
T = Topow (8 4 &R L (2.2)

In this case the expression for ¥; (§1) must be
multiplied by (1 — ¢); then

Fuw () G R Queplbd Loz nl a3
Substituting {2. 2) and (2, 3) as well as the value

of Fy, from [3] into (2.1), after transformations we
obtain

du w— Uy \™
dt; :g[( vy 1) _1]—}— (2'4)
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As before, the motion of the fine particles obeys
Eq. (1.6), in the right side of which the second term
must be multiplied by (1 — ¢).

After substituting in (2. 2) the value m; = VYgnpb?
and after transformations, we obtain

A, __w (61““62) B?I Uy — 1y (9 5)

Uz
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From the assumption regarding the absence of col-
lisions between particles of the same size it follows
that the number of large particles does not vary along
the length of the flow; therefore

- p* {81

By :7“1:~”1°\6m> . (2.6)

Since the total flow concentration is constant,

B’ = %* Mo = %*—{Hzo l‘«ml(ﬁ—‘) - 1-’} (2.7)
where u is the mass flow concentration.

The heat transfer equation for the fine particles is
not associated with the process of agglomeration and
can be used in its finished form [5]. In considering
the heat transfer of the granules it is necessary to
take into account the difference in temperatures of
the adhering particles.

Let, at a certain section of the flow, the particles
of the two fractions be at temperatures t; and ty, and
let the mass concentration of large particles be equal
to ¢y. In this section the enthalpy of the coarse frac-
tion is i; = cpuyty.

Differentiating this expression, we find

diy = ¢ (udt; + tdpy)- (2.8)

Considering that the enthalpy of the granules in-
creases as a result both of interphase heat transfer
and increase in mass, we can write

diy = ¢ [py (diy/dT,)* dvy + tydn,]s {2.9)

where (dt;/dr))* is the rate of variation of the tem-
perature of the coarse particles due to heat exchange
with the gas [5]. From (2.8), (2.9) we obtain

(2.10)

dih (A \F ot —1y dpg
dn, _<dr1) + W odrr

Finally, the heat balance equation is written in
the form

de*

1V dty 7 I, 9
o J + P —— (2.11)

c I dt
= — | m{G i

By means of the system of equations (1.86), (2.4)—
2.7), (2.10), (2.11) thus obtained we can calculate
the variation of the velocities, temperatures, and
concentrations of both fractions, as well as the di-
ameter (or mass) of the coarse particles along the
length of the flow. This system can be solved by the
method of finite differences.

As an example, we have calculated the heating and motion of a
dispersed material with §;,= 1 mm, & = 0.1 mm, wy= 8 m/sec,
g = Moo= 0.738 kg/kg, ¢ =1, ti=800°C, tyg=ty;= 0°C, uyy=uyy =
= 0.

Figures 4 and o show the variation of the velocity and the tem-
perature of gas and particles of both fractions along the length of the
flow. Curves 1 relate to the coarse particles (granules), 2 to the fine
particles, and 3 to the gas.

In a certain section of the flow (section A-A in Fig. 4) the ve-
locity of the large particles falls to zero, which is attributable both
to a fall in the temperature of the gas flow and to an increase in the
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mass of the particles. In that section the coarse particles begin to

fall out of the flow, Given a suitable choice of the quantity w [6]
the process will be stationary for any flow length, i.e,, the coarse
particles will be entrained to infinity.

The curves of temperature variation for the two fractions are of
roughly the same nature as for nonisothermal flow without agglomera-
tion of the particles [5]. Agglomeration leads to more rapid heating
of the coarse particles, since small particles at a higher temperature
participate in granule formation,

The above analysis of the process of thermal granularion of a dis-
persed material in the suspended state shows that this effect can pro-
vide a basis for the development of new high-intensity technological
processes in many branches of industry, such as the production of ce-
ment clinker, the agglomeration of ion ore, etc. [7].
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